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SUMMARY

This paper presents a detailed multi-methods comparison of the spatial errors associated with �nite dif-
ference, �nite element and �nite volume semi-discretizations of the scalar advection–di�usion equation.
The errors are reported in terms of non-dimensional phase and group speed, discrete di�usivity, arti�cial
di�usivity, and grid-induced anisotropy. It is demonstrated that Fourier analysis provides an automatic
process for separating the discrete advective operator into its symmetric and skew-symmetric compo-
nents and characterizing the spectral behaviour of each operator. For each of the numerical methods
considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of
pure advection and pure di�usion. It is demonstrated that streamline upwind Petrov–Galerkin and its
control-volume �nite element analogue, the streamline upwind control-volume method, produce both an
arti�cial di�usivity and a concomitant phase speed adjustment in addition to the usual semi-discrete ar-
tifacts observed in the phase speed, group speed and di�usivity. The Galerkin �nite element method and
its streamline upwind derivatives are shown to exhibit super-convergent behaviour in terms of phase and
group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method
and its streamline upwind derivatives yield strictly second-order behaviour. In Part II of this paper, we
consider two-dimensional semi-discretizations of the advection–di�usion equation and also assess the
a�ects of grid-induced anisotropy observed in the non-dimensional phase speed, and the discrete and
arti�cial di�usivities. Although this work can only be considered a �rst step in a comprehensive multi-
methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses
of multiple numerical methods in a common analysis framework. Published in 2004 by John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Numerical methods for the solution of partial di�erential equations have evolved to the point
where the ‘end-user’ is faced with choosing from a plethora of formulations, e.g. �nite di�er-
ence, �nite volume or �nite element, upwind or stabilization techniques, structured or unstruc-
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tured grids, mesh-full or mesh-free, etc. Each choice has its individual strengths and weak-
nesses. In order to understand the di�erences and similarities between competing methods,
an initiative to perform a multi-methods comparison based on numerical and computational
performance has been launched.
The comparison of numerical methods can be based on a number of metrics such as trun-

cation error, rate of convergence, and dispersive and di�usive behaviour. Such a comparison
between dissimilar methods is di�cult because it may not be possible to select criteria that
‘fairly’ represent each method. For example, the best way to compare �nite di�erence methods
that are based on Taylor series with �nite element methods that may be best represented by
errors measured in the energy norm is an open question.
As a �rst step in this multi-methods analysis and comparison, we chose to apply Fourier

analysis because it provides a general methodology that is capable of analysing multiple
methods in a single mathematical framework while providing a great deal of information
and insight into each method. In this work, we use Fourier analysis to probe the follow-
ing aspects of each method: (a) numerical dispersion, i.e. phase and group velocity errors,
(b) apparent, i.e. discrete, di�usivities that are wavelength dependent—spatial discretization in-
troduces this often-ignored error, even though many schemes exhibit under-di�usive
behaviour at short-wavelengths, (c) the limiting behaviour of short wavelength informa-
tion for both wave propagation and di�usion, (d) the identi�cation and characterization of
arti�cial di�usivity introduced via upwinding, (e) grid bias errors in phase, group, discrete
di�usivity and arti�cial di�usivity, and (f) asymptotic convergence properties and resolution
requirements.
Fourier analysis provides the ability to identify and characterize the arti�cial di�usivity of

upwind methods because, in e�ect, it automatically segregates the discrete advection oper-
ators into dissipative symmetric and non-dissipative skew-symmetric parts. In addition, this
technique also provides insight into the asymptotic convergence of the methods without the
ambiguities associated with the choice of a single error norm for multiple methods.
For this e�ort, a variety of �nite di�erence, �nite volume and �nite element methods are

considered. Each method is considered on both one- and two-dimensional periodic Cartesian
grids. Attention has been restricted to the following advective schemes: �rst through third-
order upwind and second-order centered di�erences, QUICK, and Fromm’s method. Here,
Fromm’s method is considered in a semi-discrete form, i.e. in the limit as �t → 0, for
the purposes of analysis rather than in its original fractional-step form [1]. For the �nite
element methods both Galerkin (FEM) and streamline-upwind Petrov–Galerkin (FEM-SUPG)
formulations are considered. The �nite volume methods include the control-volume �nite
element method (CVFEM) with and without the stream-line upwind analogue of SUPG known
as SUCV (CVFEM-SUCV) [2, 3]. In addition, two �nite volume schemes derived using least-
squares gradient reconstruction (LSR) are considered.

1.1. Background and historical perspective

In general, the application of discrete solution methods to hyperbolic partial di�erential equa-
tions, e.g. pure advection, can result in solutions that are dispersive even though the physical
model for wave propagation is non-dispersive. Dispersion errors are typically characterized
by the di�erences between the apparent, i.e. numerical, phase and group speed of waves and
their exact counterparts.
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In the context of pure (linear) advection, the phase speed is the speed at which indi-
vidual waves propagate. In the discrete sense, the phase speed is a function of the wave-
length of the propagating wave. Therefore, phase error may be viewed as a measure of the
in�uence of numerical dispersion on the apparent phase speed relative to the true phase
speed.
In contrast to the phase speed, the group speed describes the propagation of wave packets

that are comprised of short wavelength signals modulated by a slowly varying, longer wave-
length envelope. Because the energy associated with a wave packet travels with the packet,
the group speed is often referred to as the ‘energy’ velocity. The group speed is also referred
to as the speed of modulation. For a non-dispersive medium the phase and group speed are
identical.
In discrete advection, the group speed may be used to study and explain the propagation of

short wavelength signals that are typically close to 2�x in wavelength where �x is the char-
acteristic mesh spacing. Vichnevetsky [4–6] has demonstrated that spurious 2�x oscillations,
that are induced by rapid changes in mesh resolution and at physical boundaries, propagate
at a group speed associated with a 2�x wavelength.
Phase and group speed errors represent some of the most constraining numerical errors

associated with the simulation of advection dominated processes (see also Reference [7]).
The accurate simulation of advection dominated processes using discrete numerical schemes
hinges upon having a clear understanding of the constraining numerical errors, and su�cient
computational resources to e�ect solutions at the requisite grid scale. Examples of this may
be seen when attempting to compute turbulent �ow �elds via direct numerical simulation
(DNS) or large eddy simulation (LES). Controlling the dispersive errors, e.g. phase speed
error, to within 5% for a �rst-order hyperbolic equation requires approximately 11–12 cells
per wavelength when using traditional �nite di�erence or lumped-mass �nite element methods
(see Table 2.6.2 in Reference [8]). Thus, the simulation of advection dominated problems is
limited by the wavelength that the grid can accurately represent. A failure to respect the so-
called grid Nyquist limit can introduce deleterious aliasing e�ects that corrupt the simulation
�delity.
In contrast to the phase and group errors, the application of a discrete method to the di�usive

part of the advection–di�usion equation yields a discrete di�usivity that is not equivalent to
the prescribed di�usivity in the partial di�erential equation. The discrete di�usivity exhibits
wavelength dependent behaviour, and in multiple dimensions is directionally dependent. The
fact that signals di�use at di�erent rates based on wavelength is frequently overlooked, but
explains why some methods may appear to be under-di�usive in certain circumstances. We
have found little discussion in the literature regarding the wavelength-dependent behaviour of
the discrete di�usivity. However, the work by Jansen et al. [9], has dealt with improving the
accuracy of low-order stabilized �nite elements by including a reconstructed residual-based
di�usion operator. Unfortunately, we have not yet analysed this variant of Galerkin=least-
squares formulation to assess its spectral behaviour.
The use of a generalized Fourier analysis to assess dispersive and di�usive errors is not

new and has been used by numerous researchers to characterize the performance of numeri-
cal methods. The e�ects of consistent, lumped and higher-order mass matrices on the phase
speed for linear and quadratic �nite elements were investigated by Belytschko and Mullen
[10] for wave propagation in a linear elastic medium in one dimension. Here, it was veri-
�ed that the period elongation errors associated with a trapezoidal rule time integrator can
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be nearly matched with the leading phase errors introduced by a consistent mass matrix.
Similarly, the period shortening associated with central di�erences in time can be matched
with the lagging phase errors associated with mass lumping for linear elements. This com-
pensatory interaction between the time integrator and mass matrix yielded the class of meth-
ods typically referred to as ‘matched’ methods found in many explicit solid dynamics codes
today.
Vichnevetsky et al. [11, 12, 6] have investigated the dispersive nature of both �nite dif-

ference and �nite element methods for the �rst-order wave equation. In Reference [13], the
dispersive errors introduced by nonuniform grid spacing and ‘hard’ boundaries are discussed,
and the possibility of using arti�cial viscosity to damp these short wavelength spurious waves
is investigated. Similar analysis techniques have been applied to wave propagation in peri-
odic domains [14]. Trefethen [15] has considered the role of group velocity in understanding
the propagation of wave packets, the generation of parasitic waves at interfaces, and sta-
bility. Here, the in�uence of group velocity in two-dimensional �nite di�erence discretiza-
tions with uniform aspect ratio was considered. Karni [16] has characterized the group speed
errors associated with symmetric upwind schemes for pure advection, i.e. a �rst-order wave
equation.
Fourier analysis has also been applied to �nite element discretizations in order to understand

the dispersive nature of elastic wave propagation in bars and locking phenomena in beams
[17]. This analysis technique was applied by Park and Flaggs [18] in an e�ort to understand
and ameliorate locking phenomena in Co plate elements. Alvin and Park [19] have also used
Fourier analysis to tailor the frequency response of beams and bars discretized with the �nite
element method.
More recently, Shakib and Hughes [20] have applied Fourier analysis to the space–time

Galerkin=least-squares (GLS) method for advection–di�usion problems. Harari and Hughes
[21] present the phase error associated with the GLS discretization for the second-order wave
equation in a �nite domain. Deville and Mund [22] have used Fourier analysis to investigate
the spectral behaviour of the iteration matrix for �nite element preconditioning. Thompson
and Pinsky [23] extended the concepts of Fourier analysis in order to treat p-version �nite
element discretizations. This work provides practical guidelines for the number of elements
per wavelength in terms of the spectral order. Similarly, Grosh and Pinsky [24] have applied
Fourier dispersion analysis to �uid loaded plates for structural acoustics simulations. Nance
et al. [25] have used Fourier analysis to develop low-dispersion �nite volume aeroacoustic
solvers where the dispersion and dissipation are critical to the code performance. Christon [26]
considered the in�uence of the �nite element mass matrix on the dispersion characteristics of
second-order wave equation for acoustic �uid–structure interaction. Christon and Voth [27, 28]
have applied von Neumann analyses to assess the numerical performance of reproducing kernel
semi-discretizations in one- and two-dimensions and considered both hyperbolic and parabolic
partial di�erential equations.
In the ensuing discussion, Section 2 presents an overview of the generalized Fourier analysis

used in this study to compute the phase and group speed, discrete and arti�cial di�usivity,
and truncation error for the semi-discretizations. In Section 3, the phase and group speed,
discrete di�usivity, and arti�cial di�usivity results are presented for the one-dimensional �nite
element, control-volume �nite element, and �nite di�erence=volume semi-discretizations. A
complete summary of the one- and two-dimensional results may be found in Section 4 in Part
II of this paper.
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2. FORMULATION AND ANALYSIS

The starting point for the Fourier analysis is the linear advection–di�usion equation,

@T
@t
+∇ · (uT )= �∇2T (1)

Here, T is the temperature (or any other passive scalar), u= u–̂+v—̂ is the prescribed advective
velocity, –̂ and —̂ are unit vectors in the x and y-coordinate directions, respectively, and � is
the thermal di�usivity. The advective velocity �eld is assumed to be div-free, i.e. ∇ · u=0, in
both the continuous and discrete sense. For the ensuing analysis, both the advective velocity
and thermal di�usivity are constant.
Fourier analysis can be applied to spatially-discrete, temporally-discrete, and fully-discrete

systems (where space and time are both discrete). For our purposes, we chose to consider the
one- and two-dimensional semi-discrete equations which also correspond to the fully-discrete
situation in the limit as �t→ 0. The generic semi-discrete form of Equation (1) is

MṪ +A(u)T +KT =0 (2)

where M is a generalized unit-mass matrix, A(u) is the advection operator, and K is the
di�usivity operator. The speci�cs of each of the generic operators and centering=averaging of
the dependent variable, T , remains to be speci�ed. The appendix presents the stencils for the
various methods analysed in this work.
For a typical �nite di�erence method, the generalized unit-mass matrix is simply the identity

matrix, I, and K is the standard �ve-point di�erence representation of the Laplacian. In this
case, T represents grid-point (or cell-centered) values of the temperature. For the upwind
methods, the advective operator and mass matrix vary according to the speci�c scheme under
consideration.
For the �nite element method, the generalized unit-mass matrix is

M=�Mc + (1− �)Ml (3)

where Mc is the consistent mass matrix, Ml is the row-sum lumped (diagonal) mass matrix,
and 06�61. In this case, T represents node-centered temperature values. The details for
obtaining the weak form of the advection–di�usion equation and the associated mass, advection
and di�usion operators are well known (see for example Reference [8]), and are not repeated
here.
We also consider several variants of a node-centered �nite volume scheme and the control-

volume �nite element method in this work. The node-centered �nite volume method uses a
cell-averaged temperature, T =1=V

∫
V T dV where V represents the cell volume centered at the

node. Thus, in the results presented here, and in Part II of this paper, the �nite volume results
should be interpreted in terms of a cell-averaged temperature. In contrast, the control-volume
�nite element method relies on nodal temperatures.

2.1. Fourier analysis

The Fourier analysis proceeds by choosing either an in�nite computational domain or alter-
natively a periodic domain. In the ensuing analysis, a ‘regular’ Cartesian grid is considered
where the mesh spacing in the x and y-coordinate directions is �x and �y, respectively.
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Figure 1. Propagation direction: (a) on a �nite di�erence grid; (b) on a 2× 2 patch of a �nite element
mesh; (c) on a control-volume �nite element mesh.

This is illustrated in Figure 1(a) for a �ve-point �nite di�erence stencil, Figure 1(b) for a
patch of four quadrilateral �nite elements, and Figure 1(c) for control-volume �nite elements.
The wave vector direction is denoted by �, and the nodal x and y locations are given by
xm=m�x, and yn= n�y, with the aspect ratio, �=�y=�x.

Remark
The restriction to regular grid con�gurations does not restrict the application of the generalized
Fourier analysis to only grids comprised of quadrilaterals. For example, regular arrangements
of triangular elements may be analysed as in Reference [29].

A fundamental solution to the continuous problem is selected for a �xed wave number or
wavelength and placed on the computational domain as shown in Figure 2. In general, the
wave vector k and velocity vector u need not be aligned, but to simplify our two-dimensional
analysis, we assume the wave vector and velocity vector are aligned, i.e. #= �. In Part II
of this paper, the assumption that the wave vector and velocity vector are aligned is relaxed
for one representative discretization method. However, practical space limitations prohibits
extensive discussion of this additional e�ect.
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Figure 2. Fundamental solution with wavelength �, advective velocity u and direction #,
and wave vector k and direction �.

Using the fundamental solution, the response of the discrete system, discretized via �nite
di�erences, �nite elements, etc. may then be computed in terms of the grid aspect ratio, mesh
resolution, wave number, propagation speed and direction. The response of the discrete system
is wavelength dependent, and is used to identify and characterize the phase and group speed,
discrete thermal di�usivity, arti�cial di�usivity, grid bias, and asymptotic convergence rates.
Proceeding with the analysis and following Vichnevetsky and Bowles [4], we begin with

a pure advection problem where

M
{
dT
dt

}
+A(u)T =0 (4)

and consider a sinusoidal trial solution of the form

Tk; (m;n)(t)= T̂ k(t)�(k;x) (5)

where �(k;x) is a column vector with entries for each (m; n) grid point corresponding to

�(k;x)=




exp[�k ·x(1;1)]
...

exp[�k ·x(m;n)]
...

exp[�k ·x(M;N )]




(6)

Here, k is the wave vector, k= ‖k‖ is the wave number, x(m;n) = xm–̂+yn—̂, and �=
√−1. The

grid location identi�ed by (m; n) corresponds to (xm; yn)= (m�x; n�y) with the total number
of grid points in the x- and y-directions being (M;N ), respectively.
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We note in passing that by casting the semi-discrete equations on a Cartesian grid, the mass,
advection and di�usivity matrices have a banded structure where the non-zero entries in the
matrices are equal along lines parallel to the main diagonal, i.e. they are Toeplitz matrices.
Equation (5) is a solution to Equation (4) provided that

dT̂ k

dt
= Â(k)T̂ k (7)

where Â(k) is the symbol (also referred to as the spectrum). The symbol is easily computed
as

Â(k)=
−�

T
A(u)�

�
T
M�

(8)

where the entries of � are the complex conjugate of the entries in �, i.e. �(k;x(m;n))=

exp[−�k ·x(m;n)]. Calculation of the symbol relies on the fact that �
T
M� �=0 which is the

case for all of the methods considered here, i.e. the mass is either the identity, is symmetric,
positive de�nite (SPD), or contains an SPD part. As noted by Vichnevetsky [4], �(k;x) are
the eigenvectors of the discrete Toeplitz operator M−1 ·A(u), and Â(k) are the corresponding
eigenvalues.
The solution to Equation (4) at each grid point (m; n), found by direct integration, is

Tk; (m;n)(t)= T̂ k(0) exp[Re(Â(k))t] exp[�{k ·x(m;n) + Im(Â(k))}t] (9)

where Re(Â) is the real part of the symbol, and Im(Â) is the imaginary part. A similar
equation is true for the continuous advection equation. So, as demonstrated by Vichnevetsky
[4], the sinusoidal trial solutions, with the proper time-dependent coe�cients, are solutions to
both the semi-discrete and continuous equations. Based on this fact, the di�erence between
the continuous and semi-discrete solutions may be compared one wave number at a time in
order to assess the artifacts introduced by the spatial discretization.
For the pure advection problem, there are two e�ects to be considered: dissipation and

dispersion. The semi-discrete solution does not decay with time if

|T̂ k(t)|= |T̂ k(0)| exp[Re(Â(k))] (10)

which can only be true if Re(Â(k))=0. In this situation, the semi-discretization is said to be
energy conserving. This is the case when A(u) is skew-symmetric and M is symmetric. In
either case, when the amplitude of the signal does not decay with time, the semi-discretization
is also referred to as neutrally dissipative.
In contrast, there is amplitude decay when at least some of the real eigenvalues are negative.

That is, if Re(Â(k))60 for all k, or Re(Â(k))¡0 for some of k, then the amplitude of the
solution will decay in time, and the semi-discretization is dissipative. The introduction of a
non-symmetric M can result in a scheme that is dissipative even if A(u) is skew-symmetric.
This is the situation for both FEM-SUPG and CVFEM-SUCV. If Re(Â(k))¿0 for some k,
then the amplitude of the signal will grow in time, and the semi-discretization is considered
to be unstable.

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:839–887



GENERALIZED FOURIER ANALYSES: PART I 847

Remark
An alternative approach to the decomposition of the advection operator into symmetric and
skew-symmetric parts proceeds as follows. Given an arbitrary advection operator, A, the
symmetric (di�usive) part is Asym =1=2(A + AT) and the skew-symmetric part is Askew =
1=2(A − AT). Fourier analysis can, of course, be performed with these operators directly.
However, the Fourier analysis will automatically perform an equivalent decomposition that
yields the real and imaginary components of the symbol, Â(k). The appendix presents the
semi-discrete operators in a stencil format with the x and y-advection operators split into
symmetric and skew-symmetric components for all of the methods considered in this paper.

When Re(Âk)=0, i.e. the discretization is energy conserving, and the only remaining nu-
merical artifact is the di�erence between the speed that signals propagate in the continuous
and discrete sense. In order to assess this e�ect, Equation (5) is written as

Tk; (m;n)(t)= T̂ k(0) exp[�k(m�x cos �+ n�y sin �+ Im(Â(k)t=k)] (11)

By de�nition, the phase speed is the projection of u= ‖u‖(cos#–̂+sin #—̂) in the direction of
k,

c≡ u ·k
k
= ‖u‖ cos (�− #) (12)

The cyclic frequency is

!= u ·k (13)

which when substituted into Equation (12) yields the continuous phase speed,

c=
!
k

(14)

As noted earlier, for the ensuing discussion we assume �=# and so have c= ‖c‖= ‖u‖. This
restriction is relaxed in Part II for one discretization to give a �avour of its e�ect.
From Equations (11) and (14), the discrete, or apparent phase speed is

c̃(k)=
!̃
k
=
Im(Â(k))

k
(15)

where !̃ is the discrete analogue to !. Equation (15) clearly shows the wave number depen-
dence of the discrete phase velocity. Thus, it is clear that each wavelength will propagate at
its own unique velocity on the computational grid.
The group velocity, vg= vgx î+ vgy ĵ, often referred to as the energy velocity, describes how

local disturbances that are modulated by a longer-wavelength signal propagate. The group
velocity is de�ned as

vg=
@!
@kx

î +
@!
@ky

ĵ (16)

where, kx= k cos(�) and ky= k sin(�). For a non-dispersive continuum the group velocity is
simply the advective velocity, i.e. vgx = u and vgy = v. In the discrete or dispersive case, the
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group velocity is not always aligned with the wave vector, but instead has a propagation
direction de�ned by

�=arctan
(
ṽgy
ṽgx

)
(17)

where ṽgx = @!̃=@kx, and ṽgy = @!̃=@ky are the components of the discrete group velocity.
Turning to the complete advection–di�usion problem, and following Vichnevetsky and

Bowles [4] and Mullen and Belytschko [29], a general solution to Equation (1) is devel-
oped in the following form:

T (x; y; t)=A exp[�k(x cos �+ y sin �)− �!t − k2�t] (18)

Here, k denotes the wave number, the wave vector is k= k cos �–̂ + k sin �—̂, and ! is the
circular frequency associated with the advective solution. The general solution in Equation
(18) incorporates two fundamental solutions—one for the advective part, and one for the
di�usive part of the advection–di�usion problem obtained by linear superposition.
Now, turning to the semi-discrete case, the general solution may be written in terms of the

grid-spacing as

Tm;n(t)=A exp[�k(m�x cos �+ n�y sin �)− �!̃t − k2�̃t] (19)

where !̃ is the discrete wavelength-dependent circular frequency, �̃ is the discrete wavelength-
dependent di�usivity, and the subscript k has been suppressed for notational convenience.
After substitution into Equation (2), and using the appropriate stencils from the appendix, the
result may be segregated into its real and imaginary components yielding relationships for the
discrete circular frequency !̃, discrete phase speed c̃= !̃=k, and the discrete di�usivity �̃. For
a detailed example of this procedure for second-order upwind, see Reference [30].

2.2. Asymptotic analysis

In order to provide a basis for comparison between methods that are derived using Taylor
series expansions and Galerkin based methods, which are not subservient to Taylor series, we
make use of the relationship between Fourier analysis and classical truncation error analysis
as pointed out by Vichnevetsky and Bowles [4, see pp. 24–26, 103–108]. The connection
between Fourier analysis and truncation error provides the means to extract the leading-order
of the truncation error for a method based on the asymptotic behaviour of the discrete phase
error.
The methodology outlined by Vichnevetsky and Bowles begins with a de�nition of the

classical truncation error, which given a solution to the one-dimensional continuous advection
problem, T (x; t), may be written as

{T:E:}=
{
dTm

dt

}
− [M−1A(u)]{Tm} (20)

where Tm(t)=T (xm; t) are the values of T (x; t) evaluated at the discrete points xm.
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Using a Taylor series expansion about grid point m, and substituting the results into Equation
(20) the discretization error may be estimated in terms of the grid spacing �x. For the semi-
discretizations considered here, as demonstrated by Vichnevetsky and Bowles, a generalized
model for the truncation error associated with the semi-discretization may be written as

T:E:=C�xp
(
@p+1T
@xp+1

)
+H:O:T (21)

where C is a constant independent of the data, grid spacing �x and formal order of
accuracy p.
By taking the (spatial) Fourier transform of Equations (20) and (21) and equating the

results, Vichnevetsky and Bowles obtained the following relationship between the discrete
phase velocity, the continuous phase velocity and the truncation error,

c̃ − c=C(��xk)p +H:O:T‡ (22)

Rearranging, this may be cast as a phase error in Fourier space,

c̃
c
− 1= Ĉ(�k�x)p +H:O:T: (23)

i.e. an error-free discrete phase velocity would yield c̃=c=1. As will be shown in Section 3.1,
the order of accuracy may be recovered from the slope of the non-dimensional phase speed, c̃=c
as k�x→ 0. Alternatively, the order of accuracy may be obtained by expanding the analytical
formulae for the phase speed in terms of k�x and extracting the leading-order terms in the
limit as k�x→ 0. In the ensuing discussion, we make use of this relationship to identify the
order of accuracy for the advective and di�usive discretizations considered in this work.

2.3. Semi-discrete methods

In this work, a variety of popular �nite di�erence, �nite volume and �nite element methods are
considered. The Fourier analysis used to develop the baseline methods comparison is restricted
to analysis on ‘regular’ Cartesian grids—although we consider grids with non-unit aspect ratio
in two dimensions. In the Cartesian grid setting many of the �nite volume methods considered
here revert to stencils that correspond to familiar �nite di�erence methods. All of the semi-
discrete operators for the methods considered in this work are presented in the appendix.
The family of �nite volume methods considered are, in general, developed for unstructured

grids using a combination of MUSCL [31] interpolation with slope limiters and gradient
reconstruction methods to model the convection terms. Two methods of gradient reconstruc-
tion are considered: application of the divergence theorem and an unweighted least squares
procedure [32]. As noted before, these �nite volume methods rely on a cell-averaged tem-
perature, T . For the model problem under scrutiny, the node-centered �nite volume results
are based on the following semi-discrete equation which has been cast on a Cartesian grid

‡Note that the wave number k corresponds to ! in Equation (2.25) of Vichnevetsky and Bowles [4].
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(see Figure 1),

�x�y
@Tm;n

@t
+�yu(Tm+1=2; n − Tm−1=2; n) +�xv(Tm;n+1=2 − Tm;n−1=2)

= �
�y
�x
(Tm+1; n − 2Tm;n + Tm−1; n) + �

�x
�y

(Tm;n+1 − 2Tm;n + Tm;n−1) (24)

The various �nite volume methods are derived by applying the generic MUSCL interpolation
for convective terms, e.g.

Tm+1=2; n=Tm;n +
 
2
[(1− �)∇Tm;n · (rm+1; n − rm;n) + �(Tm+1; n − Tm;n)] (25)

where 06 61 is a slope limiter, and rm;n is the position vector. In this work, the non-
linear aspects of this type of slope limiter are not considered. Instead, the two extrema for
 are used, i.e.  =0 and  =1. The various �nite volume methods are derived for di�erent
combinations of the parameter � and the method of gradient reconstruction to compute ∇T i; j

in the interpolation formula.
For Cartesian grids, application of the divergence theorem yields a central di�erence ap-

proximation for the cell gradients, which when substituted into the MUSCL interpolant yield
semi-discretizations that correspond to a variety of well-known higher order di�erence methods
for  = 1: second-order central-di�erence (CD, �=1), second-order upwind (SOU, �=−1),
Fromm [1] di�erencing (this is the limit of Fromm’s fully discrete method for �t→ 0; �=0),
QUICK [33] (�=1=2), and a third-order upwind method (TOU) also due to Leonard [33]
(�=1=3). Note that the version of QUICK considered here neglects the transverse-curvature
terms required to obtain uniform third-order accuracy for advection—see Equation (30) in
Leonard [34]. We also consider an ad hoc method composed of CD with a ‘�nite element
like’ consistent mass matrix that can be derived by assuming a linear variation of the �eld
variable within the control volume.
We analyze two �nite volume schemes derived using the unweighted least-squares recon-

struction and �=−1 and 0. For convenience we will refer to these as LSR(-1) and LSR(0) in
the subsequent sections. Note that in one space dimension, the LSR(-1) scheme corresponds
to the second-order upwind (SOU) method, and the LSR(0) scheme corresponds to Fromm’s
method. However, in two space dimensions, this is not the case.
For the �nite element methods, we consider the well-known Galerkin �nite element method

(FEM) and its streamline-upwind Petrov–Galerkin (FEM-SUPG) derivative along with the
more recently developed control volume �nite element method (CVFEM) and its analogue to
SUPG, known as SUCV (CVFEM-SUCV) [2, 3].

3. RESULTS

In this section, a summary of the discrete phase speed, group speed, di�usivity and arti�cial
di�usivity is presented. The asymptotic truncation error associated with the phase and group
speed, discrete and arti�cial di�usivity is presented for each method along with the resolution
requirements for 5 and 1% error levels in the phase speed. In the discussion that follows, the
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numerical approximation to the physical di�usivity � is referred to as the discrete di�usivity
�̃, and the di�usivity added directly or indirectly by the advection scheme is referred to
as the arti�cial di�usivity �art. The non-dimensional phase speed (c̃=c), group speed (ṽg=c),
discrete di�usivity (�̃=�), and arti�cial di�usivity (1=Parte ) are presented as functions of the non-
dimensional wave number, 2�x=�= k�x=	. The grid Peclet number is de�ned as Pe= c�x=2�,
and the Peclet number based on the arti�cial di�usivity is de�ned as Parte = c�x=2�art. For
simplicity, the non-dimensional results are referred to as the phase, group, discrete di�usivity
and arti�cial di�usivity.

Remark
An alternative and equivalent non-dimensional scaling for the arti�cial di�usivity is based on
the physical di�usivity, i.e. �art=(�Pe). However, this de�nition is equivalent to the scaling
de�ned above and requires the introduction of a physical di�usivity which need not be present
in the case of pure advection (although the arti�cial di�usivity may always be present). In
addition, for the limiting case of pure advection where Pe →∞, de�ning Parte = c�x=2�art
provides an indicator of how much the discrete solution deviates from pure advection. In
addition, this metric indicates that when arti�cial di�usivity is introduced, the apparent or
e�ective Peclet number will remain �nite—at least through a portion of the discrete spectrum.

For each numerical method, the analytical expressions for the phase and group speed, dis-
crete and arti�cial di�usivity are presented in a compact form as an aid to understanding the
results of the Fourier analysis (see Tables II, IV, VI, and VIII). In the analytic expressions
for phase and group speed, discrete and arti�cial di�usivity, the in�uence of the mass matrix
in the FEM, FEM-SUPG, CVFEM, and CVFEM-SUCV methods is expressed in terms of
the function M(k�x) as shown in Table I. Note that the second-order node-centered �nite
di�erence scheme with a consistent mass matrix, referred to as the CD-Mc method in sub-
sequent sections, is identical to the CVFEM formulation in one dimension—although it is
node-centered. Therefore, only the CVFEM results are presented here since the equivalent
semi-discrete operators yield identical results. In addition, for the one-dimensional results,
the second-order upwind (SOU) semi-discretization corresponds identically to the LSR(-1)
scheme, and Fromm’s method to the LSR(0) scheme. For this reason, we present results
using the SOU and Fromm’s labels in the one-dimensional results. However, we remind the
reader that results for the LSR schemes should be interpreted in terms of a cell-averaged
temperature and note that there can be signi�cant di�erences in the details of the truncation
error associated with FDM and FVM discretizations as pointed out by Leonard [35].
As a �nal note, we consider errors in phase, group and di�usivity of less than 1% to be

small. For the purposes of our discussion, errors between 1 and 5% are termed moderate while
those that exceed 5% are deemed large. Note that this choice of error bounds is subjective,

Table I. Mass matrix contribution for FEM and CVFEM methods where Ml indicates
a lumped mass matrix and Mc indicates a consistent mass matrix.

Method M(k�x)

FEM=CVFEM-Ml 1
FEM-Mc (2 + cos(k�x))=3
CVFEM-Mc (3 + cos(k�x))=4
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Table II. Formulae for one-dimensional phase speed.

Method Phase speed (c̃=c)

FOU sin(k�x)=k�x
SOU [4 sin(k�x)− sin(2k�x)]=2k�x
TOU [8 sin(k�x)− sin(2k�x)]=6k�x
QUICK [10 sin(k�x)− sin(2k�x)]=8k�x
Fromm’s [6 sin(k�x)− sin(2k�x)]=4k�x

FEM=CVFEM
sin(k�x)[M(k�x) + 
(2
 + P−1

e )(1− cos(k�x))]
k�x(M2(k�x) + 
2 sin2(k�x))

and further, depends upon the application of interest. However, in our experience, errors in
phase, group and discrete di�usivity of less than 5% are acceptable for many engineering
applications.

3.1. Phase speed

The analytic expressions for the non-dimensional phase speed for all of the semi-discrete
methods considered may be found in Table II. Here, the compact notation for the mass matrix
(see Table I) is used for the FEM=CVFEM phase speed. The stabilized methods (FEM-SUPG
and CVFEM-SUCV) introduce a Pe number dependence in the phase speed as indicated by
the presence of the stabilization parameter, 
 (see the appendix, Equation (A28)), and the
Peclet number Pe. Here, the FEM and CVFEM phase speeds are recovered for 
=0. The
phase speed formulae for second-order central di�erences, the Galerkin �nite element method
and control-volume �nite element method may be found in Reference [8].§

The non-dimensional phase speed results for a variety of �nite di�erence (or node-centered
�nite volume) methods are presented in Figure 3. For comparison, the non-dimensional phase
speed for the FEM and CVFEM methods are presented in Figures 4 and 5. The phase speed
for the FEM-SUPG and CVFEM-SUCV methods are also presented in Figures 4–6 for pure
advection, i.e. when Pe →∞.
In the absence of phase errors, the ideal semi-discrete phase speed would exactly replicate

the continuous phase speed over the entire discrete spectrum from the limit �x→ 0 to the
grid Nyquist limit where 2�x=�=1. However, all of the methods considered here introduce
phase errors—either lagging or leading, with signals associated with the Nyquist limit, i.e.
2�x wavelengths, being stationary. In the one-dimensional limit, the lumped mass FEM and
CVFEM, and FDM methods yield identical spatial discretizations and non-dimensional phase
speed results.

Remark
In this initial multi-methods comparison, we have not considered the e�ects of ad hoc ‘tricks-
of-the-trade’, such as reduced integration for the FEM and CVFEM formulations, on the phase

§The formula in Reference [8] for phase speed (Equations (2)–(9)) contains a typographical error in the numerator.
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Figure 3. Non-dimensional phase speed for a variety of �nite-di�erence
(node-centered �nite-volume) methods.
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Figure 4. Non-dimensional phase speed for �nite element method with a consistent
mass matrix (FEM-Mc), lumped mass (FEM-Ml), consistent mass matrix and SUPG

(FEM-SUPG) with 
opt and 
= 1
2 .

and group speed, discrete and arti�cial di�usivity. The interested reader may consult Gresho
et al. [36] who has considered the e�ects of reduced integration for the advection–di�usion
equation using a Galerkin �nite element formulation.
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Figure 5. Non-dimensional phase speed for control-volume �nite element method with a consis-
tent mass matrix (CVFEM-Mc), lumped mass (CVFEM-Ml), and a consistent mass matrix and

SUCV (CVFEM-SUCV) with 
opt and 
= 1
2 .
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CVFEM - SUCV β=1/2

FEM - SUPG β=1/2

FEM - SUPG βopt

Figure 6. Non-dimensional phase speed for control-volume �nite element and �nite element methods
using streamline upwinding (CVFEM-SUCV and FEM-SUPG).

As a reminder to the reader, recall that the �rst-order upwind scheme may be decomposed
into a centered second-order advection scheme with concomitant second-order arti�cial vis-
cosity. This is re�ected in Figure 3 by the non-dimensional phase curve for the ‘Centered
FDM’ scheme. Both Fromm’s method and the SOU scheme introduce leading phase error
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Figure 7. Non-dimensional phase speed for �nite element method with a consistent mass
matrix and FEM-SUPG with 
opt for Pe=1, 2, 5, 10, 100.

for the mid-range wavelengths although the severe (≈ 30%) phase errors in the mid-range of
the discrete spectrum for the second-order upwind method are signi�cantly greater than for
Fromm’s method.
In comparison to the �nite di�erence schemes, the only �nite element formulation that yields

leading phase errors as large as the second-order upwind scheme is the FEM-SUPG method
with a constant stabilization parameter of 
= 1

2 (see Figure 4). Of interest here is the signif-
icant improvement in phase speed in moving from the baseline Galerkin FEM discretization
using a consistent mass to the FEM-SUPG formulation with an optimal stabilization parameter

opt = 1=

√
15. This value of the stabilization parameter was shown by Raymond and Gardner

[37] to annihilate all truncation error up to sixth order; see Reference [8].
The CVFEM methods considered here yield strictly lagging phase error as shown in

Figure 5. The CVFEM-SUCV method with 
opt (optimal 
 for FEM-SUPG) and a consistent
mass matrix yields a non-dimensional phase speed close to the Galerkin FEM with a consistent
mass matrix in the mid-range wavelengths. Although, it will be shown that CVFEM-SUCV
cannot reproduce the fourth-order phase accuracy of the simple Galerkin FEM. The ad hoc
application of the streamline-upwind Petrov–Galerkin formulation also cannot be ‘tuned’ to
yield the high-order behaviour associated with FEM-SUPG. In fact, 
= 1

2 appears to be an
overall better stabilization parameter for SUCV, albeit with noticeable lagging errors in the
phase speed through the mid-range wavelengths of the discrete spectrum. A direct compari-
son between the FEM-SUPG and CVFEM-SUCV methods may be seen in Figure 6 where
the lagging phase errors of the CVFEM-SUCV method are evident—even for the ‘optimal’
CVFEM-SUCV stabilization parameter, 
= 1

2 .
The FEM-SUPG and CVFEM-SUCV methods exhibit a dependence on the Peclet number

as shown in Figures 7 and 8 for 16Pe6100 and optimal stabilization parameters—
=1=
√
15

for FEM-SUPG and 
= 1
2 for CVFEM-SUCV. Both FEM-SUPG and CVFEM-SUCV yield
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Figure 8. Non-dimensional phase speed for control-volume �nite element method with a consistent
mass matrix and CVFEM-SUCV with 
= 1

2 for Pe=1, 2, 5, 10, 100.

large leading phase errors over 50% or more of the discrete spectrum for Pe¡5 suggesting
that the stabilization parameter should be selected based on the Peclet number.
The deleterious e�ect of the Peclet number dependence may be ameliorated by using the

stabilization parameter suggested by Brooks and Hughes [38] which in one dimension is

�=

�x�
u

(26)

where

�= coth (Pe)− 1
Pe

(27)

Figure 9 shows that � approaches unity for large Peclet number and goes to zero rapidly
for Pe63. Tezduyar [39] has suggested a doubly-asymptotic approximation to � as a more
computationally e�cient alternative to Equation (27). The in�uence of the Peclet-adjusted
stabilization on the phase speed is shown in Figure 10 for FEM-SUPG and in Figure 11 for
CVFEM-SUCV. In both cases, moderate to large leading phase errors are introduced in the
mid-range of the discrete spectrum.

3.1.1. Asymptotic truncation error and resolution estimates. The asymptotic truncation error
in phase speed can be determined by taking the limit as k�x→ 0 in the analytical expressions
given in Table II. Asymptotic representations for SOU, Fromm, TOU and QUICK are given
by

c̃
c
∼ 1− 1

6
n− 8
n− 2 (k�x)2 +O((k�x)4) (28)
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Doubly-Asymptotic Approximation
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Figure 9. Doubly-asymptotic stabilization parameter for FEM-SUPG—see Reference [39].
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Figure 10. Non-dimensional phase speed for the �nite element method with a consistent mass matrix
and FEM-SUPG using 
opt and �= coth (Pe)− 1=Pe for Pe=1, 2, 5, 10, 100.

for n=4, 6, 8, and 10, for each of these methods, respectively. These methods are second-
order, except for TOU which is fourth order (with a leading coe�cient of −1=30). The
asymptotic results for the upwind �nite volume=�nite di�erence methods may be veri�ed
by forming the Taylor series approximations for the skew-symmetric parts of the advection
operators.
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Figure 11. Non-dimensional phase speed for control-volume �nite element method with a consistent
mass matrix and SUCV with 
= 1

2 and �= coth (Pe)− 1=Pe for Pe=1, 2, 5, 10, 100.

Remark
The �rst-order upwind scheme yields a centered skew-symmetric second-order advection op-
erator, and consequently the asymptotic estimate for the truncation error based on the phase
speed yields O(�x2).

For both FEM-SUPG and CVFEM-SUCV the asymptotic representation of the non-
dimensional phase speed has the form

c̃
c
∼ 1 + g2(k�x)2 + g4(k�x)4 +O((k�x)6) (29)

In the limit of pure advection, i.e. Pe →∞, g2≡ 0 as shown by Gresho and Sani [8] (see
Equation (2.6)–(180)) for FEM-SUPG. By choosing 
=1=

√
15,

g4 =

2

12
− 1
180

(30)

can also be made zero resulting in a sixth-order accurate method.
For CVFEM-SUCV g2 is independent of 
, with an asymptotic representation of

c̃
c
∼ 1− 1

24
(k�x)2 +

(

2

8
− 7
960

)
(k�x)4 +O((k�x)6) (31)

Therefore for CVFEM-SUCV there is no 
 that will result in a higher order formula or
optimal phase speed behaviour in terms of k�x. However, a heuristically optimal value of

= 1

2 gives a dispersion curve that approaches FEM-SUPG (see Figures 8 and 7) although
the truncation error is only O(�x2) and there are lagging errors in the mid-range wavelengths.
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Table III. Asymptotic estimates of truncation error and resolution requirements based
on the phase error for pure advection.

�=�x for
Asymptotic

Method T.E. 5% error 1% error

FOU O(�x2) 11.4 25.6
SOU O(�x2) 15.8 36.2
TOU O(�x4) 5.46 8.35
QUICK O(�x2) 6.83 13.5
Fromm’s O(�x2) 3.96 17.4
FEM-Mc O(�x4) 3.93 5.61
FEM-Ml O(�x2) 11.4 25.6
FEM-SUPG 
opt O(�x6) 2.88 4.76
FEM-SUPG 
= 1

2 O(�x4) 4.39 6.78
CVFEM-Mc O(�x2) 6.24 13.1
CVFEM-Ml O(�x2) 11.4 25.6
CVFEM-SUCV 
opt O(�x2) 5.71 12.8
CVFEM-SUCV 
= 1

2 O(�x2) 2.69 11.8

Note that the FEM-SUPG and CVFEM-SUCV results are presented only for a consistent
mass matrix Mc.

If the lumped-mass approximation is applied to either FEM-SUPG or CVFEM-SUCV, i.e.
row-sum-lumping of the original symmetric mass matrix, and not the skew-symmetric portion
induced by the stabilization, the asymptotic truncation error reverts to,

c̃
c
∼ 1− 1

6
(k�x)2 +

(

2

4
+

1
120

)
(k�x)4 +O((k�x)6) (32)

which for 
=0 gives the formula for the centered �nite di�erence scheme (equivalent to
lumped mass FEM and CVFEM).
The asymptotic convergence rates based on the phase error are presented in Table III.

Figure 12 shows the slope of the phase error in the asymptotic range for the �nite di�erence
schemes considered here. We note that while the constant varies for the centered, second-order
upwind, QUICK and Fromm’s method, the slope of all these methods corresponds to a O(�x2)
convergence rate. Again, the third-order upwind method exhibits O(�x4) convergence—a
superconvergent behaviour that is still not clear to us.
In contrast to the �nite di�erence results, the phase error for the �nite element methods

shown in Figure 13 indicate super-convergent behaviour except when a lumped mass matrix
is used. The O(�x6) behaviour of FEM-SUPG with the phase error minimizing stabiliza-
tion parameter is clearly shown here, while 
= 1

2 is similar to the baseline Galerkin FEM
results. The strictly second-order behaviour of CVFEM is shown by the phase-error plots in
Figure 14. Unlike SUPG for the �nite element method, the SUCV methods do not exhibit any
reduction in phase error relative to the baseline CVFEM method with a consistent mass matrix.
As with the �nite element method, mass lumping increases the phase error, but for CVFEM
there is no reduction in convergence rate as CVFEM does not exhibit any superconvergent
behaviour.
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Figure 12. Asymptotic convergence rates based on phase error for a variety of �nite-di�erence
(node-centered �nite-volume) methods.
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Figure 13. Asymptotic convergence rates based on phase error for the �nite element method
with a consistent mass matrix (FEM-Mc), lumped mass (FEM-Ml), consistent mass matrix

and FEM-SUPG with 
opt and 
= 1
2 .

In addition to the asymptotic truncation error, the phase error analysis may be used to
estimate the required resolution for a given level of ‘acceptable’ error. The resolution require-
ments for a 5 and 1% error in phase are shown with the asymptotic truncation error estimates
in Table III. Estimates for resolution requirements for additional �nite di�erence methods may
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Figure 14. Asymptotic convergence rates based on phase error for the control-volume �nite element
method with a consistent mass matrix (CVFEM-Mc), lumped mass (CVFEM-Ml), consistent mass

matrix and CVFEM-SUCV with 
opt and 
= 1
2 .

be found in Reference [8, p. 155]. The best phase accuracy for the least grid resolution is
provided by FEM-SUPG with 
opt while the worst case is the second-order upwind method
which, despite its second-order accuracy, requires more resolution than the �rst-order upwind
method for an equivalent error.
Although the CVFEM variants yield competitive resolution estimates for a 5% phase error,

as the error band is tightened, the CVFEM methods do not perform as well as their FEM
counterparts. This is due to the large lagging phase error through the midrange of the discrete
spectrum (see Figure 5) which results in an increase in the resolution requirement by a factor
of 3–5 relative to the �nite element method. In a similar fashion, Fromm’s method requires
less resolution than TOU for a 5% phase error. However, for a 1% error in phase, the converse
is observed—TOU requires less resolution per unit wavelength than Fromm’s method. This
reversal in resolution requirements is due to the fact that Fromm’s method exhibits leading
phase error for 062�x=�61=2 that is less than 5%. Consequently, the resolution estimate for
Fromm’s method is based on the intersection of the phase error curve with c̃=c=0:95 yielding
a relaxed resolution estimate relative to TOU. A tighter error band of 1% captures the leading
phase error resulting in the increased resolution estimate for Fromm’s method in comparison
to TOU. The result is a resolution requirement that is greater than twice that required for
TOU as shown in Table III.

3.2. Group speed

In one-dimension, the non-dimensional group velocity is

ṽg=
@!̃
@k

(33)
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For a non-dispersive medium, the group velocity is identical to the phase speed. However, as
already discussed, the discretization procedures considered here result in a dispersive repre-
sentation of the continuum problem, i.e. the phase speed is a function of the wave number.
Thus, using Equation (14), Equation (33) may be written in terms of the wavelength-dependent
phase speed as

ṽg= c̃(k) + k
@c̃
@k

(34)

Therefore, the group speed will only be identical to the phase speed, the ideal situation, when

k
@c̃
@k
=0 (35)

This can occur in the limit as k → 0, i.e. a constant mode, or when the slope of the phase
curve with respect to the wave number is zero—a situation that we desire in the limit of
k → 0.
Indeed, methods like FEM and FEM-SUPG with a consistent mass matrix and the associated

higher-order phase speed accuracy do a good job of emulating this behaviour, but fail at the
short wavelengths where the slope of the phase speed curve changes rapidly as the phase
speed goes to zero with 2�x=�→ 1, i.e. at the Nyquist limit. The consequence of this is
re�ected in the group speed which will become large and negative at the grid Nyquist limit.
Thus, the better the phase speed behaviour through the discrete spectrum, the worse the group
speed will be for 2�x wavelengths. This is re�ected in the results that follow.
The group speed results for all the methods considered here are shown in Table IV. The

non-dimensional group speed for the �nite di�erence methods, FEM and CVFEM are pre-
sented in Figures 15–17, respectively. As expected, all of the methods considered here exhibit
relatively large negative group speed for 2�x wavelengths. The large leading phase errors for
the second-order upwind (SOU) method are re�ected in the large (relative to the other FD
methods) leading group errors and the large negative group speed at the grid Nyquist limit.
The negative group speed at the Nyquist limit is a direct consequence of the fact that the
phase speed decreases rapidly with respect to wave number as the Nyquist limit is approached.
For SOU, the leading phase error in the mid-range of the discrete spectrum leads to

larger group errors for 0:762�x=�61:0 relative to the other �nite di�erence methods. Similar
e�ects are observed in general for the FEM and CVFEM methods, but are somewhat more
pronounced for the consistent mass and SUPG=SUCV variants. Again, this is due to the fact
that phase speed remains faithful to the physical phase velocity over a larger range of the
discrete spectrum. For the FEM-SUPG method with 
= 1

2 , ṽg=c= − 12 for the 2�x wave-
lengths. The phase-error-minimizing value of the stabilization parameter, 
opt = 1=

√
15 reduces

this large negative group velocity at the Nyquist limit.
Although not shown here due to space limitations, the e�ect of the Peclet number scaling

on SUCV and SUPG is to reduce the large negative group speed for Pe62 relative to the
case where scaling is not used. The reader is directed to Reference [30] for additional details.

3.2.1. Asymptotic truncation error and resolution estimates. The asymptotic truncation
error in the group speed can be determined by taking the limit as k�x→ 0 in the analytical
expressions given in Table IV. The �rst- and second-order upwind methods are both O(�x2)

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:839–887



GENERALIZED FOURIER ANALYSES: PART I 863

Table IV. Formulae for one-dimensional phase speed.

Method Group speed (#̃g=c)

FOU cos (k�x)

SOU 2 cos (k�x)− cos (2k�x)

TOU
1
3
[4 cos (k�x)− cos (2k�x)]

QUICK
1
4
[5 cos (k�x)− cos (2k�x)]

Fromm’s
1
2
[3 cos (k�x)− cos (2k�x)]

FEM
3(1 + 2 cos (k�x))
(2 + cos (k�x))2

FEM-
[M(k�x)+(2
2 + 
=Pe)(1− cos (k�x))][

4
9
+
1
12
(7−3
2) cos (k�x)+

(9
2−1)
36

cos 3(k�x)]

(M2(k�x)+
2 sin2 (k�x))2SUPG

+
(



Pe
+2
2−1

3

)
sin2((k�x))

M2(k�x)+
2 sin2 (k�x)

CVFEM
4(1 + 3 cos (k�x))
(3 + cos (k�x))2

CVFEM-
[M(k�x)+(2
2+
=Pe)(1− cos (k�x))]

[
3
8
+
(41−16
2)

64
cos (k�x)+

(16
2−1)
64

cos 3(k�x)
]

(M2(k�x)+
2 sin2 (k�x))2SUCV

+
(



Pe
+ 2
2 − 1

4

)
sin2((k�x))

M2(k�x) + 
2 sin2 (k�x)

in group speed. The asymptotic form of the group speed for Fromm, TOU and QUICK is

ṽg
c
∼ 1 + 1

2
4− n
n− 1 (k�x)2 +O((k�x)4) (36)

for n=3, 4 and 5, respectively. Thus, Fromm and QUICK are also second order in group,
while TOU is fourth order (with a coe�cient of −1=6).
For FEM-SUPG the asymptotic group speed representation is

ṽg
c
∼ 1 + 3


2Pe
(k�x)2 +

15
 − 180
2 + 2Pe(15
2 − 1)
72Pe

(k�x)4 (37)

For 
opt and in�nite Pe, the group speed is sixth-order accurate—similar to the phase speed.
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Figure 15. Non-dimensional group speed for a variety of �nite-di�erence
(node-centered �nite-volume) methods.
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Figure 16. Non-dimensional group speed for �nite element method using a consistent
mass matrix (FEM-Mc), lumped mass (FEM-Ml), consistent mass matrix and SUPG

(FEM-SUPG) with 
opt and 
= 1
2 .

For 
=0, the asymptotic representation for FEM is recovered,

ṽg
c
∼ 1− 1

36
(k�x)4 (38)

which is fourth-order accurate.
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Figure 17. Non-dimensional group speed for control-volume �nite element method using a
consistent mass matrix (CVFEM-Mc), lumped mass (CVFEM-Ml), consistent mass matrix

and SUCV (CVFEM-SUCV) with 
opt and 
= 1
2 .

For SUCV the asymptotic representation is

ṽg
c
∼ 1 +

(
3

2Pe

− 1
8

)
(k�x)2 +

( −7
192

+
5
2

8
− 5
2

2Pe

)
(k�x)4 (39)

For 
=0 the asymptotic representation of group speed for CVFEM is recovered,

ṽg
c
∼ 1− 1

8
(k�x)2 − 7

192
(k�x)4 (40)

Both CVFEM and CVFEM-SUCV are second-order accurate in the group speed.
The resolution requirements for a 5 and 1% error in group speed are shown with the

asymptotic truncation error estimates in Table V. The best group speed accuracy for the least
grid resolution is provided by FEM-SUPG with 
opt while the worst case is the second-
order upwind method which, despite its second-order accuracy, requires more resolution than
the �rst-order upwind method. Again, the CVFEM method exhibits reasonable resolution
requirements for a 5% error in the group. However, for a 1% error, the resolution requirements
increase signi�cantly due to lagging group speed in the midrange of the discrete spectrum. For
CVFEM-SUCV with 
= 1

2 , the resolution requirements are about a factor of 4 times higher
than for the FEM-SUPG method with the optimal stabilization parameter—a factor of 16 in
two dimensions for equivalent error.

3.3. Discrete di�usivity

Attention is now turned to the behaviour of the discrete, wavelength-dependent di�usivity.
The process of discretization introduces a wavelength dependence into the discrete thermal
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Table V. Asymptotic estimates of truncation error and resolution requirements based
on the group error for pure advection.

�=�x for
Asymptotic

Method T.E. 5% Error 1% Error

FOU O(�x2) 19.7 44.4
SOU O(�x2) 27.7 62.7
TOU O(�x4) 8.29 12.6
QUICK O(�x2) 11.2 22.9
Fromm’s O(�x2) 11.8 30.8
FEM-Mc O(�x4) 5.70 8.31
FEM-Ml O(�x2) 19.7 44.4
FEM-SUPG 
opt O(�x6) 3.75 4.62
FEM-SUPG 
= 1

2 O(�x4) 6.70 10.3
CVFEM-Mc O(�x2) 10.4 22.5
CVFEM-Ml O(�x2) 19.7 44.4
CVFEM-SUCV 
opt O(�x2) 9.88 22.2
CVFEM-SUCV 
= 1

2 O(�x2) 3.13 21.3

Note that the SUPG and SUCV results are presented only for a consistent mass matrix Mc.

Table VI. Formulae for one-dimensional discrete di�usivity.

Method Discrete di�usivity (�̃=�)

FDM=FVM 2[1− cos (k�x)]=(k�x)2

FEM=CVFEM
2M(k�x)(1− cos (k�x))

(k�x)2[M2(k�x) + 
2 sin2 (k�x)]

di�usivity even when a constant thermal di�usivity is prescribed for the continuum. The
wavelength dependent behaviour of the discrete di�usivity indicates that individual modes
that comprise a temperature pro�le will di�use at di�erent rates. The degree to which the rate
of di�usion varies with wavelength is a function of the method chosen.
The formulae for the non-dimensional discrete di�usivity are presented in Table VI. All

of the �nite di�erence and �nite volume methods use second-order centered approximations
for the di�usion operator and yield identical discrete di�usivities as indicated by the sin-
gle FDM=FVM entry in Table VI. The FEM=CVFEM (
=0) with lumped mass matrix
(M(k�x)=1) also revert to the FDM=FVM formula.
The non-dimensional discrete di�usivity for the FEM, CVFEM (and FDM) methods are

presented in Figure 18, and the results for FEM-SUPG and CVFEM-SUCV are presented in
Figure 19. Here, we present the FEM-SUPG and CVFEM-SUCV results for the case when
Pe¿3 with a �xed stabilization parameter 
. For Pe63, the stabilization would presumably
not be necessary. The ideal non-dimensional discrete di�usivity would be unity for the entire
discrete wavelength spectrum. Thus, the deviation of the non-dimensional discrete di�usivity
�̃=� from unity may be interpreted as an error in discrete di�usivity relative to the continuum
value of the di�usivity.
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Figure 18. Non-dimensional discrete di�usivity for Galerkin �nite element (FEM) and
control-volume �nite element methods (CVFEM).
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Figure 19. Non-dimensional discrete di�usivity for FEM with SUPG and CVFEM with SUCV.

The consistent mass FEM method (FEM-Mc) exhibits an over-di�usive nature over the en-
tire discrete spectrum, and the consistent mass CVFEM method (CVFEM-Mc) is over-di�usive
in the mid-range of the discrete spectrum. In contrast, the process of mass lumping yields dis-
crete di�usivities for FEM and CVFEM that are under-di�usive for all discrete wavelengths.
The FEM-SUPG and CVFEM-SUCV methods exhibit a sensitivity to the magnitude of the
stabilization parameter, 
. This demonstrates that a phase-error minimizing optimal value of
the stabilization parameter for pure advection is not an optimal choice for thermal di�usion.
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Table VII. Asymptotic estimates of truncation error and resolution requirements based
on the discrete di�usivity for thermal di�usion.

�=�x for
Asymptotic

Method T.E. 5% Error 1% Error

FDM-Centered O(�x2) 8.03 18.1
FEM-Ml O(�x2) 8.03 18.1
CVFEM-Ml O(�x2) 8.03 18.1
FEM-Mc O(�x2) 8.19 18.2
FEM-SUPG (
opt) O(�x2) 4.20 8.37
FEM-SUPG (
= 1

2 ) O(�x2) 11.0 25.5
CVFEM-Mc O(�x2) 5.45 12.8
CVFEM-SUCV (
opt) O(�x2) 2.30 9.52
CVFEM-SUCV (
= 1

2 ) O(�x2) 12.3 28.4

The �nite volume schemes considered all share a common second-order centered discretiza-
tion representation of the di�usion term in Equation (1) with an O(�x2) truncation error as
shown in Table VII. In one dimension, the lumped-mass FEM, lumped-mass CVFEM, and
node-centered �nite volume schemes all yield equivalent discrete di�usivities (Figure 18).
Thus, the discrete di�usivity for FOU, SOU, TOU, etc. will be the same as the lumped
mass result of Figure 18. Similarly, the node-centered �nite volume scheme that introduces
a consistent mass matrix (CD-Mc) yields a discrete di�usivity that is identical to the FEM
method with a consistent mass in one dimension. Note that the consistent mass CVFEM and
CVFEM-SUCV (with 
opt) schemes yield the least error over the spectrum of dimensionless
wave number (see Figures 18 and 19). While the SUPG and SUCV variants show favorable
truncation error in discrete di�usivity, their use in a di�usion-dominated problem will add
unwanted (and unnecessary) arti�cal di�usion (see Figure 21).

3.3.1. Asymptotic truncation error and resolution estimates. The asymptotic truncation error
estimates for discrete di�usivity are summarized in Table VII. The mass-lumped FVM (or
FDM) methods considered all share the same central di�erence approximation for the di�usion,
resulting in the following asymptotic representation of discrete di�usivity

�̃
�
∼ 1− 1

12
(k�x)2 +

1
360

(k�x)4 (41)

For FEM-SUPG (and FEM when 
=0), the asymptotic formula for the discrete di�usivity
is

�̃
�
∼ 1−

(

2 − 1

12

)
(k�x)2 +

(

4 − 1

12

2 +

1
360

)
(k�x)4 (42)

For CVFEM-SUCV (and CVFEM when 
=0), the asymptotic form of the discrete di�u-
sivity is

�̃
�
∼ 1−

(

2 − 1

24

)
(k�x)2 +

(

4 +

1
24


2 − 7
2880

)
(k�x)4 (43)

All of the �nite element based methods are second-order for discrete di�usivity.
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Table VIII. Formulae for one-dimensional arti�cial di�usivity.

Method Arti�cial di�usivity ((Parte )
−1 = 2�art=c�x)

FOU 2[1− cos (k�x)]=(k�x)2

SOU [3 + cos (2k�x)− 4 cos (k�x)]=(k�x)2

TOU [3 + cos (2k�x)− 4 cos (k�x)]=3(k�x)2

QUICK [3 + cos (2k�x)− 4 cos (k�x)]=4(k�x)2

Fromm’s [3 + cos (2k�x)− 4 cos (k�x)]=2(k�x)2

SUPG/SUCV
4
[M(k�x)(1− cos (k�x))− sin2 (k�x)=2]

(k�x)2[M2(k�x) + 
2 sin2 (k�x)]

Finally, use of a lumped mass matrix (lumping the original mass matrix only) with FEM-
SUPG or CVFEM-SUCV stabilization yields the following discrete di�usivity

�̃
�
∼ 1−

(

2 +

1
12

)
(k�x)2 +

(

4 +

5
12


2 +
1
360

)
(k�x)4 (44)

which is identical to the discrete di�usivity for the centered di�erence method for 
=0.
The resolution requirements for a 5 and 1% error in discrete di�usivity are shown with

the asymptotic truncation error estimates in Table VII. The best di�usivity accuracy for the
least grid resolution is provided by FEM-SUPG (in term of the 1% error) with 
opt. The
worst accuracy is obtained with the 
= 1

2 CVFEM-SUCV formulation with more than 28
grid points required per wavelength to yield a discrete di�usivity error of 1%. Nearly as bad
is the FEM-SUPG, 
= 1

2 formulation.

3.4. Arti�cial di�usivity

Arti�cial di�usion can be added to a method either explicitly, e.g., via an explicit second- or
fourth-order operator, or it can be a by-product of an upwind advective discretization (e.g.
�rst-order upwinding). In general, arti�cial di�usion is not a desirable feature of a method, but
it can be useful for removing unwanted numerical artifacts such as high frequency dispersion
errors in convection-dominated problems. For hyperbolic conservation laws, i.e. pure advection
in the context of this work, a ‘properly tuned’ arti�cial viscosity can be used to select the
physically correct weak solution when non-smooth data is present.
The formulae for dimensionless arti�cial di�usion as a function of dimensionless wave num-

ber are shown in Table VIII for all the methods considered here.¶ In our opinion, an ideal
arti�cial di�usivity should only be active in the high-frequency, short-wavelength portion of
the discrete spectrum, near the Nyquist grid limit for example, and should be negligible oth-
erwise. In this respect, Figure 20, which shows arti�cial di�usion for the FDM methods, illus-
trates the well-known problem with the �rst-order-upwind method. It behaves in the opposite
manner to the ideal, maximizing the arti�cial di�usion as the grid is re�ned (k�x→ 0). The
higher order �nite di�erence methods approximate the desired spectral behaviour, although
they produce rather large amounts of arti�cial di�usion even in the mid-range frequencies

¶A factor of 1=2 is missing in the sin2 k�x term in the numerator of the arti�cial di�usion formula given in
Reference [8] for FEM (see Equations (2.6)–(78)).
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Figure 20. Non-dimensional arti�cial di�usivity for a variety of �nite di�erence
(node-centered �nite-volume) methods.
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Figure 21. Non-dimensional arti�cial di�usivity for FEM-SUPG and CVFEM-SUCV.

when compared to the FEM-based methods shown in Figure 21. These methods come closest
to the ideal spectral behaviour, with arti�cial di�usion remaining small (relative to its value
at the Nyquist limit) until 2�x=�¿0:7 permitting the signals with ‘good’ phase behaviour
to survive the side-e�ects of the arti�cial di�usivity. The centered methods, i.e. FEM and
CVFEM, do not introduce arti�cial di�usion and hence do not appear in these �gures.
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3.4.1. Asymptotic truncation error estimates. The order of truncation error in the arti�cial
di�usivity for FOU is O(1) while all of the other methods are O(�x2). The order of truncation
error indicates how quickly the arti�cial di�usivity approaches zero as a function of the non-
dimensional wave number.
The non-dimensional arti�cial di�usivity may be written as

1
Parte

=
2�art
c�x

(45)

The asymptotic representation of the dimensionless arti�cial di�usivity for �rst-order upwind
(FOU) is identical to the dimensionless discrete di�usivity in Equation (41),

1
Parte

∼ 1− 1
12
(k�x)2 +

1
360

(k�x)4 (46)

However, here the constant (unity) leading term in the asymptotic expansion indicates that
the non-dimensional arti�cial viscosity (1=Parte ) approaches a constant quantity independent of
k�x. As demonstrated by the arti�cial viscosity results for FOU in Figure 20, 1=Parte → 1 in
the limit as �x→ 0. It is important to note, however, that �art→ 0 as �x→ 0 (see Equation
(45)) so that �rst-order upwind is a consistent approximation to the pure advection problem.
The asymptotic expansion for SOU, Fromm, TOU and QUICK is

1
Parte

∼ 1
n

(
1
2
(k�x)2 − 1

12
(k�x)4 +

1
160

(k�x)6
)

(47)

for n=1; 2; 3 and 4, respectively. In contrast to FOU, these methods are all second order.
Recall that the central di�erence scheme, FEM and CVFEM do not introduce any arti�cial
di�usion. The asymptotic form for FEM-SUPG is

1
Parte

∼ 4

[
(k�x)2

24
+

1
144

(1− 6
2)(k�x)4 +O((k�x)6)
]

(48)

Using the optimal value of 
(=1=
√
15), the formula becomes,

1
Parte

=
1√
15

[
(k�x)2

6
+
(k�x)4

60

]
(49)

For CVFEM-SUCV, the asymptotic form is

1
Parte

∼ 4

[
(k�x)2

16
+

1
192

(1− 12
2)(k�x)4 +O((k�x)6)
]

(50)

Using 
= 1
2 , which is near-optimal for dispersion, the formula becomes

1
Parte

=
(k�x)2

8
− (k�x)4

48
(51)

Thus, even though they are both second order, FEM-SUPG has the smaller leading coe�cient;
this is re�ected in Figure 21.
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Finally, if the mass matrix is lumped in either of SUPG or SUCV prior to applying the
stabilization schemes, we get

1
Parte

∼ 

2

[
(k�x)2 −

(
1
6
+ 
2

)
(k�x)4 +O((k�x)6)

]
(52)

3.5. E�ects of arti�cial di�usivity

The results presented so far indicate that there is an interplay between the arti�cial di�usivity,
phase and group errors, and discrete di�usivity. While, it is di�cult to identify an ‘ideal’
arti�cial di�usivity, in our opinion, one that is active only in the high-frequency portion of
the discrete spectrum is, at a minimum, desirable. We can gain some additional insight into
the e�ects of the arti�cial di�usivity on the discrete solution by considering its e�ect on the
time rate of change in the quadratic temperature, QT ,

d
dt
(QT )=

1
2
d
dt

∫
�
TT d�=

d
dt

(
1
2
T

T
MsymT

)
(53)

where

Tm;n=A exp[−k2�artt] exp[−�k(m�x cos �+ n�y sin �) + �!̃t] (54)

is the complex conjugate of T and Msym is the symmetric part of the mass matrix.

Remark
The quadratic temperature is a reasonable quantity to consider because it provides a ‘natu-
ral’ metric for quantifying the e�ects of arti�cial di�usivity. It is well-known that, for the
advection–di�usion equation, methods that conserve the quadratic temperature generate stable
ODEs—an important feature for long-time integration. In addition, it was also demonstrated
by Lee et al. that conservation of T 2 can be more important than other forms of conservation
where stability is concerned [40].

We can show that the quadratic temperature is impacted by the symmetric and skew-
symmetric parts of the advective and mass operators respectively (note that this is trivial if
T is only real) by considering the pure advection problem, i.e. no physical di�usivity,

MsymṪ +MskewṪ +Askew(c)T +Asym(c)T =0 (55)

First, as T and T are both solutions to the semi-discrete problem, we have

T
T
MsymṪ =−T

T
MskewṪ − T

T
Askew(c)T − T

T
Asym(c)T (56)

and

T TMsymT = − T TMskewṪ − T TAskew(c)T − T TAsym(c)T (57)

where the semi-discrete equation for T (T ) has been pre-multiplied by T
T
(T T). Further,

the mass matrix has been separated into skew-symmetric, Mskew, and symmetric, Msym, parts
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in order to address the streamline-upwind �nite element and control-volume �nite element
methods. Noting that

d
dt
(QT )=

d
dt

(
1
2
T
T
MsymT

)
=
1
2
T
T
MsymṪ +

1
2
T TMsymṪ (58)

and substituting from Equations (56) and (57) yields,

d
dt
(QT )=− 1

2
T
T
MskewṪ − 1

2
T TMskewṪ − T

T
AsymT (59)

where T
T
BsymT =T TBsymT and T

T
BskewT = − T TBskewT are employed (B is any square

matrix). Clearly, the quadratic temperature involves a complex interplay between arti�cial
di�usivity (as it impacts T and T ), the symmetric part of the advection operator and the
skew-symmetric part of the mass matrix.
In order to understand the e�ect of the arti�cial di�usivity on the quadratic temperature,

we consider an advective time-scale �=�x=c and integrate Equation (53) with respect to the
time to obtain the incremental change in QT over �,

QTt+� −QTt =
∫ t+�

t

d
dt

(
1
2
T
T
MsymT

)
dt (60)

Substituting the general solution and its complex conjugate yields the quadratic temperature
at an arbitrary time, t,

QTt = A2 exp2[−k2�artt]

×
NP∑
m=1

NP∑
n=1

{
exp[−�k(xm;n cos �+ ym;n sin �)]M sym

m;n

}
(61)

where Msym
m;n is the mth row, nth column entry in Msym and NP is the number of rows=

columns. Note that QT is generally a function both of time, t, and wave number k.
In order to permit direct comparison between methods, we use the quadratic temperature

at time t to construct a non-dimensional quadratic temperature increment over the advective
time-scale � as

�QT =
QTt+� −QTt

QTt
(62)

In terms of this de�nition, it is clear that a method characterized by constant QT (i.e. no
damping of quadratic temperature) produces �QT =0 while �QT =−1 indicates a method
with complete damping of the associated waveform in one advective time scale �.
After substitution into Equation (62) and cancellation of terms, the non-dimensional quad-

ratic temperature increment may be written as,

�QT = exp2[−k2�x2=(2Parte )] (63)

where it is clear the �QT is dependent on wave number and grid spacing (as is Parte ). Finally,
note that Equation (63) is a general statement of the quadratic temperature increment for any

Published in 2004 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:839–887



874 M. A. CHRISTON, M. J. MARTINEZ AND T. E. VOTH

First-Order Upwind (FOU)

Second-Order Upwind (SOU)

Fromm’s Method

Third-Order Upwind (TOU)

QUICK

-1.0

-0.8

-0.4

-0.2

0.0

∆Q
T

-0.6

0.0 0.2 0.4 0.6 0.8 1.0

2∆x/λ

Figure 22. Non-dimensional change in incremental quadratic temperature, �QT , for a variety of �nite
di�erence (node-centered �nite-volume) methods.

FEM - SUPG   βopt

FEM - SUPG β = 1/2

CVFEM - SUCV  β = 1/2

CVFEM - SUCV β  opt

0.0 0.2 0.4 0.6 0.8 1.0
2∆x/λ

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

∆
Q

T

Figure 23. Non-dimensional change in incremental quadratic temperature, �QT , for FEM-SUPG
and CVFEM-SUCV with 
=
opt and 1

2 .

of the methods considered in this document. Indeed, the only method-dependent part occurs
in the arti�cial di�usivity contained in Parte .
As noted above, an ideal arti�cial di�usivity (and hence energy damping) should only

be active in the high-frequency, short-wavelength portion of the discrete spectrum. In this
respect, Figure 22, which shows �QT for the FDM methods, illustrates that this general
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behaviour is respected. The higher order SOU and Fromm’s methods approximate the desired
spectral behaviour, although they produce rather large amounts of damping even in the mid-
range frequencies when compared to the FEM-based methods shown in Figure 23. Conversely,
QUICK and TOU both perform quite well in the low frequency range, but do not completely
damp high-frequency signals (2�x=�=1) over the advective time-scale.
In contrast, the FEM=CVFEM schemes appear to be nearly ideal (relative to the other

methods presented here), with modest damping at low-frequencies, long-wavelengths, complete
damping of the high-frequency, short-wavelength signals and a smooth transition in the mid-
frequency range. Again, an assessment of the ‘best’ damping characteristics depends on the
complex interplay between arti�cial di�usivity, phase and group speeds.
This concludes the discussion of the one-dimensional results. In Part 2 of this paper, the

two-dimensional results are presented along with a summary of the one- and two-dimensional
results and concluding remarks.

APPENDIX A

The semi-discrete equations for each of the methods considered in this work are presented here
with the advection operators decomposed into symmetric and skew-symmetric components
where appropriate. Each of the semi-discrete equations is presented in a stencil form based
on the grid layout shown in Figure 1.
The generic form for the semi-discrete equations is

MṪ +Ax(u)T +Ay(v)T +KT =0 (A1)

For each operator in the semi-discrete equation, the ‘stencil’ entries multiply their respective
(m; n) �eld variables, e.g., for a generic operator A,

A=

(m− 2; n+ 2) (m− 1; n+ 2) (m; n+ 2) (m+ 1; n+ 2) (m+ 2; n+ 2)

(m− 2; n+ 1) (m− 1; n+ 1) (m; n+ 1) (m+ 1; n+ 1) (m+ 2; n+ 1)

(m− 2; n) (m− 1; n) (m; n) (m+ 1; n) (m+ 2; n)

(m− 2; n− 1) (m− 1; n− 1) (m; n− 1) (m+ 1; n− 1) (m+ 2; n− 1)
(m− 2; n− 2) (m− 1; n− 2) (m; n− 2) (m+ 1; n− 2) (m+ 2; n− 2)

(A2)

A.1. First-order upwind (FOU)

�x�y

0 0 0

0 1 0

0 0 0

Ṫ + u�y

0 0 0

−1 1 0

0 0 0

T + v�x

0 0 0

0 1 0

0 −1 0

T
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−�

0
�x
�y

0

�y
�x

−2
(
�y
�x

+
�x
�y

)
�y
�x

0
�x
�y

0

T =0 (A3)

This equation represents the stencil for the FOU method in the form presented in
Equation (A2). The �rst term represents the discrete mass matrix operator, the next two terms
are the x- and y-components of the advection operator, and the last term is the stencil for
the discrete representation of di�usion. It is illustrative to decompose the advection operator
into symmetric and skew-symmetric operators; the former represents the arti�cial di�usivity in
the method. The symmetric and skew-symmetric portions of the �rst-order upwind advection
operator are,

Ax= u�y

0 0 0

−1=2 1 −1=2
0 0 0

+ u�y

0 0 0

−1=2 0 1=2

0 0 0

(A4)

for the x-co-ordinate operator, and

Ay= v�x

0 −1=2 0

0 1 0

0 −1=2 0

+ v�x

0 1=2 0

0 0 0

0 −1=2 0

(A5)

for the y-coordinate operator. Clearly, the �rst stencil on the right-hand side of each component
equation is the symmetric contribution, and if the two symmetric components are summed
with the di�usion operator, the result is the classical expression for arti�cial di�usivity for
the �rst-order upwind scheme, with the form �art; x ∼ u�x and �art; y ∼ v�y.

A.2. Second-order central di�erence (CD)

�x�y

0 0 0

0 1 0

0 0 0

Ṫ + u�y

0 0 0

−1=2 0 1=2

0 0 0

T + v�x

0 1=2 0

0 0 0

0 −1=2 0

T
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−�

0
�x
�y

0

�y
�x

−2
(
�y
�x

+
�x
�y

)
�y
�x

0
�x
�y

0

T =0 (A6)

The components of the skew-symmetric advective operator are the second and third terms.
There is no symmetric portion to this advective operator and hence no arti�cial di�usion in
this method.
We also consider an ad hoc version of this scheme, referred to as a centered di�erence

method with consistent mass (CD-Mc), in which the lumped mass term in the foregoing
equation is replaced with the consistent mass matrix from CVFEM:

�x�y
64

1 6 1

6 36 6

1 6 1

Ṫ (A7)

This scheme is ad hoc because the spatial representation of the time derivative term is di�erent
from that for the advective and di�usive terms in order to arrive at this form.

A.3. Second-order upwind (SOU)

�x�y

0 0 0

0 1 0

0 0 0

Ṫ +
u�y
2

0 0 0 0 0

0 0 0 0 0

1 −4 3 0 0

0 0 0 0 0

0 0 0 0 0

T +
v�x
2

0 0 0 0 0

0 0 0 0 0

0 0 3 0 0

0 0 −4 0 0

0 0 1 0 0

T

−�KCDT =0 (A8)

where KCD denotes the 5-pt central di�erence stencil for the di�usion operator, given by the
last operator in the FOU stencil, Equation (A3) above. The symmetric and skew-symmetric
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portions of the second-order upwind advection operator are,

Ax=
u�y
2

0 0 0 0 0

0 0 0 0 0

1=2 −2 3 −2 1=2

0 0 0 0 0

0 0 0 0 0

+
u�y
2

0 0 0 0 0

0 0 0 0 0

1=2 −2 0 2 −1=2
0 0 0 0 0

0 0 0 0 0

(A9)

and

Ay=
v�x
2

0 0 1=2 0 0

0 0 −2 0 0

0 0 3 0 0

0 0 −2 0 0

0 0 1=2 0 0

+
v�x
2

0 0 −1=2 0 0

0 0 2 0 0

0 0 0 0 0

0 0 −2 0 0

0 0 1=2 0 0

(A10)

for the x- and y-components, respectively.

A.4. Third-order upwind (TOU)

�x�y

0 0 0

0 1 0

0 0 0

Ṫ +
u�y
12

0 0 0 0 0

0 0 0 0 0

2 −12 6 4 0

0 0 0 0 0

0 0 0 0 0

T +
v�x
12

0 0 0 0 0

0 0 4 0 0

0 0 6 0 0

0 0 −12 0 0

0 0 2 0 0

T

−�KCDT =0 (A11)

The symmetric and skew-symmetric portions of the third-order upwind-biased scheme are,

Ax=
u�y
12

0 0 0 0 0

0 0 0 0 0

1 −4 6 −4 1

0 0 0 0 0

0 0 0 0 0

+
u�y
12

0 0 0 0 0

0 0 0 0 0

1 −8 0 8 −1
0 0 0 0 0

0 0 0 0 0

(A12)
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and

Ay=
v�x
12

0 0 1 0 0

0 0 −4 0 0

0 0 6 0 0

0 0 −4 0 0

0 0 1 0 0

+
v�x
12

0 0 −1 0 0

0 0 8 0 0

0 0 0 0 0

0 0 −8 0 0

0 0 1 0 0

(A13)

for the x- and y-components, respectively.

A.5. Fromm’s method

�x�y

0 0 0

0 1 0

0 0 0

Ṫ +
u�y
4

0 0 0 0 0

0 0 0 0 0

1 −5 3 1 0

0 0 0 0 0

0 0 0 0 0

T +
v�x
4

0 0 0 0 0

0 0 1 0 0

0 0 3 0 0

0 0 −5 0 0

0 0 1 0 0

T

−�KCDT =0 (A14)

The symmetric and skew-symmetric portions of the advection operator in the Fromm upwind-
biased scheme are,

Ax=
u�y
4

0 0 0 0 0

0 0 0 0 0

1=2 −2 3 −2 1=2

0 0 0 0 0

0 0 0 0 0

+
u�y
4

0 0 0 0 0

0 0 0 0 0

1=2 −3 0 3 −1=2
0 0 0 0 0

0 0 0 0 0

(A15)

and

Ay=
v�x
4

0 0 1=2 0 0

0 0 −2 0 0

0 0 3 0 0

0 0 −2 0 0

0 0 1=2 0 0

+
cy�x
4

0 0 −1=2 0 0

0 0 3 0 0

0 0 0 0 0

0 0 −3 0 0

0 0 1=2 0 0

(A16)

for the x- and y-components, respectively.
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A.6. Quick

�x�y

0 0 0

0 1 0

0 0 0

Ṫ +
u�y
8

0 0 0 0 0

0 0 0 0 0

1 −7 3 3 0

0 0 0 0 0

0 0 0 0 0

T +
v�x
8

0 0 0 0 0

0 0 3 0 0

0 0 3 0 0

0 0 −7 0 0

0 0 1 0 0

T

−�KCDT =0 (A17)

The symmetric and skew-symmetric portions of the advection operator in the QUICK scheme
are

Ax=
u�y
8

0 0 0 0 0

0 0 0 0 0

1=2 −2 3 −2 1=2

0 0 0 0 0

0 0 0 0 0

+
u�y
8

0 0 0 0 0

0 0 0 0 0

1=2 −5 0 5 −1=2
0 0 0 0 0

0 0 0 0 0

(A18)

and

Ay=
v�x
8

0 0 1=2 0 0

0 0 −2 0 0

0 0 3 0 0

0 0 −2 0 0

0 0 1=2 0 0

+
v�x
8

0 0 −1=2 0 0

0 0 5 0 0

0 0 0 0 0

0 0 −5 0 0

0 0 1=2 0 0

(A19)

for the x- and y-components, respectively.

A.7. Node-centered �nite volume with least-squares gradient reconstruction (LSR)

Two methods that result from applying an unweighted least squares gradient reconstruction
scheme were introduced in Section 2.3. The stencil for the LSR(-1) ( =1 and �=−1)
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is given by

�x�y

0 0 0

0 1 0

0 0 0

Ṫ +
u�y
6

0 0 0 0 0

1 −1 −1 1 0

1 −10 11 −2 0

1 −1 −1 1 0

0 0 0 0 0

T

+
v�x
6

0 0 0 0 0

0 1 −2 1 0

0 −1 11 −1 0

0 −1 −10 −1 0

0 1 1 1 0

T

−�KCDT =0 (A20)

The symmetric and skew-symmetric portions of the LSR(-1) scheme are

Ax=
u�y
6

0 0 0 0 0

1=2 0 −1 0 1=2

1=2 −6 11 −6 1=2

1=2 0 −1 0 1=2

0 0 0 0 0

+
u�y
6

0 0 0 0 0

1=2 −1 0 1 −1=2
1=2 −4 0 4 −1=2
1=2 −1 0 1 −1=2
0 0 0 0 0

(A21)

and

Ay=
v�x
6

0 1=2 1=2 1=2 0

0 0 −6 0 0

0 −1 11 −1 0

0 0 −6 0 0

0 1=2 1=2 1=2 0

+
v�x
6

0 −1=2 −1=2 −1=2 0

0 1 4 1 0

0 0 0 0 0

0 −1 −4 −1 0

0 1=2 1=2 1=2 0

(A22)
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The stencil for the LSR(0) ( =1 and �=0) scheme is given by

�x�y

0 0 0

0 1 0

0 0 0

Ṫ +
u�y
12

0 0 0 0 0

1 −1 −1 1 0

1 −13 11 1 0

1 −1 −1 1 0

0 0 0 0 0

T

+
v�x
12

0 0 0 0 0

0 1 1 1 0

0 −1 11 −1 0

0 −1 −13 −1 0

0 1 1 1 0

T

−�KCDT =0 (A23)

The symmetric and skew-symmetric portions of the LSR(0) scheme are:

Ax=
u�y
12

0 0 0 0 0

1=2 0 −1 0 1=2

1=2 −6 11 −6 1=2

1=2 0 −1 0 1=2

0 0 0 0 0

+
u�y
12

0 0 0 0 0

1=2 −1 0 1 −1=2
1=2 −7 0 7 −1=2
1=2 −1 0 1 −1=2
0 0 0 0 0

(A24)

and

Ay=
v�x
12

0 1=2 1=2 1=2 0

0 0 −6 0 0

0 −1 11 −1 0

0 0 −6 0 0

0 1=2 1=2 1=2 0

+
v�x
12

0 −1=2 −1=2 −1=2 0

0 1 7 1 0

0 0 0 0 0

0 −1 −7 −1 0

0 1=2 1=2 1=2 0

(A25)
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A.8. Galerkin �nite element method (FEM)

The full stencil for the Galerkin �nite element method reads

�x�y
36

1 4 1

4 16 4

1 4 1

Ṫ +
u�y
12

−1 0 1

−4 0 4

−1 0 1

T +
v�x
12

1 4 1

0 0 0

−1 −4 −1
T

=
�
6

�y
�x

+
�x
�y

4
�x
�y

− 2�y
�x

�y
�x

+
�x
�y

4
�y
�x

− 2�x
�y

−8
(
�y
�x

+
�x
�y

)
4
�y
�x

− 2�x
�y

�y
�x

+
�x
�y

4
�x
�y

− 2�y
�x

�y
�x

+
�x
�y

T (A26)

The components of the skew-symmetric portion of the advective operator are the second and
third terms; there is no symmetric portion to this operator.

A.9. Finite element method with SUPG (FEM-SUPG)

The stencil for the SUPG method contains a modi�ed mass matrix and an arti�cial di�usion
term,

�x�y
36

1 4 1

4 16 4

1 4 1

Ṫ + �
u�y
12

1 0 −1
4 0 −4
1 0 −1

Ṫ + �
v�x
12

−1 −4 −1
0 0 0

1 4 1

Ṫ

+
u�y
12

−1 0 1

−4 0 4

−1 0 1

T +
v�x
12

1 4 1

0 0 0

−1 −4 −1
T

− �
6

u2
�y
�x

− 3uv+ v2
�x
�y

4v2
�x
�y

− 2u2�y
�x

u2
�y
�x

+ 3uv+ v2
�x
�y

4u2
�y
�x

− 2v2 �x
�y

−8
(
u2
�y
�x

+ v2
�x
�y

)
4u2
�y
�x

− 2v2 �x
�y

u2
�y
�x

+ 3uv+ v2
�x
�y

4v2
�x
�y

− 2u2�y
�x

u2
�y
�x

− 3uv+ v2
�x
�y

T
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=
�
6

�y
�x

+
�x
�y

4
�x
�y

− 2�y
�x

�y
�x

+
�x
�y

4
�y
�x

− 2�x
�y

−8
(
�y
�x

+
�x
�y

)
4
�y
�x

− 2 �x
�y

�y
�x

+
�x
�y

4
�x
�y

− 2 �y
�x

�y
�x

+
�x
�y

T (A27)

where the two-dimensional version of the stability parameter [38] is

�=

(
u�x + v�y

u2 + v2

)
(A28)

for large Pe. The 
 coe�cient can be chosen to optimize the method with respect to its
dispersive characteristics. The components of the skew-symmetric portions of the advective
operator are given by the fourth and �fth terms, while the symmetric portion is the sixth term,
which can also be written as

− 1
6


u2

�y
�x

1 −2 1

4 −8 4

1 −2 1

+ 3uv

−1 0 1

0 0 0

1 0 −1
+ v2

�x
�y

1 4 1

−2 −8 −2
1 4 1




showing that the symmetric portion of the advective operator induced by SUPG contains a
cross term and therefore cannot be resolved into x- and y-components as in the �nite volume
methods.

A.10. Control volume �nite element method (CVFEM)

The stencil for the CVFEM reads:
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T (A29)
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The advective operator contains only skew-symmetric components, given by the second and
third terms in the equation.

A.11 Control-volume �nite element method with SUCV (CVFEM-SUCV)

The SUCV method results in a scheme similar to SUPG:
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T (A30)

The skew-symmetric part of the advective operator remains the same as in CVFEM, while
the symmetric portion, giving rise to arti�cial di�usion, is given by the 6th term in the
foregoing formula. Similar to FEM, this term can be separated into three pieces, except the
4-8-4 columns and rows of SUPG become 6-12-6, (with the same signs) in the SUCV.
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